# EVALUATION OF INTRINSIC REACTION CONSTANTS OF RESONANCE, FIELD/INDUCTIVE AND POLARIZABILITY EFFECTS THROUGH MOLECULAR STRUCTURES SUBJECT TO PROTONATION

J. CATALÁN\*, J. FABERO, M. SÁNCHEZ-CABEZUDO AND J. L. G. DE PAZ

Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

### AND

## R. W. TAFT\*

Department of Chemistry, University of California, Irvine, California 92717, USA

This paper reports a theoretical approach based on *ab initio* calculations for the evaluation of intrinsic reaction constants of resonance, field/inductive and polarizability effects of compounds subject to protonation. Field/ inductive and polarizability constants can be evaluated from direct relationships between  $\delta\Delta E_p$  and intrinsic contributions of the substituent. On the other hand, resonance constants should be estimated from relationships between the proton charge in the protonated molecular form and the intrinsic contributions of the substituent. It is also shown that during a protonation process the change in  $\pi$  charge of the carbon atom that is to bear the substituent should be the most suitable index for determining the  $\pi$ -electron demand of the structure concerned.

## INTRODUCTION

Developing a straightforward model describing the effect of substituents (X) on the properties of a given molecular system has been one of the chief goals of chemists ever since the Hammett equation was reported.<sup>1</sup> Acid-base ionization data from compounds in solution were the starting point for the development of a model according to which the electronic effect of a substituent is made up of two essential components, viz. the resonance component and the field/inductive component.<sup>2</sup> However, the use of solution data often results in confusing information being obtained on the substituent as a result of experimental observations being frequently affected by the solvent effect.<sup>3,4</sup> This has raised highly controversial conclusions on the electron resonance effect.<sup>1,5</sup> Studies on the field/inductive electron effect have also been hindered by the lack of availability of any molecular structures capable of transmitting only this effect.6

 $\delta\Delta G^{\circ}$  measurements on gas-phase acid-base equili-

bria of the form

$$\begin{array}{c} X-M-H_{(g)}^{v}+H-M;_{(g)}^{v-1} \rightleftharpoons \\ X-M;_{(v)}^{v-1}+H-M-H_{(g)}^{v} \quad (v=0,1) \quad (1) \end{array}$$

for 38 families of compounds<sup>6g</sup> have led workers to reconsider the substituent effect. Thus, in addition to greater support for intrinsic field/inductive and resonance effects, some workers have pointed out the need to take into account the substituent polarizability effect.<sup>7,8</sup> Gas-phase data of this type have also allowed the main solvent effects, viz. those arising from solvation of the substituent itself,<sup>3,4,6g</sup> and those which counteract the resonance and field/inductive effects and virtually cancel the polarizability effect,<sup>4,6g,7,9-11</sup> to be analysed.

On analysing some families of compounds, Taft and Topsom<sup>6g</sup> concluded that  $\delta\Delta G^{\circ}_{(g)}$  can be accurately expressed on the basis of the intrinsic contributions of the substituent, viz. polarizability ( $\sigma_a$ ), field/inductive ( $\sigma_F$ ) and resonance component ( $\sigma_R$ ), by means of the equation

$$\delta \Delta G^{\circ}_{(g)} = A_0 + \rho_a \sigma_a + \rho_F \sigma_F + \rho_R \sigma_R \tag{2}$$

Received 10 July 1995 Revised 25 September 1995

<sup>\*</sup> Author for correspondence.

CCC 0894-3230/96/020087-18 © 1996 by John Wiley & Sons, Ltd.

where the products  $\rho_a \sigma_a$ ,  $\rho_F \sigma_F$  and  $\rho_R \sigma_R$  denote the polarizability (P), field/inductive (F) and resonance contributions (R) of the substituent at the  $\delta \Delta G^{\circ}_{(g)}$  value concerned. The reaction constants of these contributions ( $\rho$ ) provide information on the molecular skeleton (M) that bears the substituent and reaction site, and also on their relative situation in the structure. The results of this type of analysis are normally highly satisfactory and open up a new approach for the rationalization and prediction of  $\delta \Delta G^{\circ}_{(g)}$  values for acid–base equilibria.

Hansch *et al.*<sup>12</sup> evaluated the  $\sigma$  intrinsic contributions of 74 substituents. Many of them were also estimated theoretically by *ab initio* methods and were reproduced to within  $\pm 0.03$ .<sup>8,13</sup> They also reported the  $\sigma$  values for several hundred substituents that were compiled from different sources.<sup>12</sup>

If the  $\delta\Delta G^{\circ}_{(g)}$  values for a family of compounds M which conform to process (1) and the  $\sigma_{\alpha}$ ,  $\sigma_{\rm F}$  and  $\sigma_{\rm R}$ values for different substituents (X) are known, the reaction constants  $\rho$  corresponding to the molecular skeleton in question (M) can be readily obtained by subjecting equation (2) above to a simple multi-linear regression statistical analysis. The results thus obtained for processes involving cationic species have revealed<sup>6g</sup> that the reaction constant  $\rho_{\rm F}$  and, particular,  $\rho_a$ , decrease with increase in the distance between the substituent and the reaction site. The dependence of inductive effect with the distance has already been proposed by Bowden and Grubbs,<sup>14</sup> Charton<sup>15</sup> and Exner and Friedl.<sup>16</sup> On the other hand,  $\rho_{\rm R}$  is markedly dependent not only on the molecular structure, but also on the nature of the reaction site. Thus,  $\rho_{R}$  is 12.7<sup>6g</sup> for *p*-X-*N*,*N*-dimethylanilines and 35.0<sup>6g</sup> for *p*-X-methylstyrenes (or 25.7 for *p*-X-pyridines and 13.3 for o-X-pyridines<sup>6g</sup>).

This marked dependence of the reaction constants on the nature of the molecular skeleton made it advisable to use theoretical models for their estimation inasmuch as a statistical analysis of experimental data is often hindered by the lack of a reasonably large number of derivatives or their instability. Scarcely volatile compounds also obviously hinder the acquisition of  $\delta \Delta G^{\circ}_{(g)}$ measurements on equilibria such as that depicted in equilibrium (1). In this respect, mention should be made of the attempts of Reynolds et al.<sup>5f</sup> at establishing empirical relationships between the  $\pi$ -electron demand of some systems and the effect of various substituents. They proposed the use of the  $\pi$  charge on the carbon atom of the protonated parent molecule which was to bear a given substituent X as the most suitable index for quantifying the  $\pi$ -electron demand of a molecular system, which they denoted  $q_{\pi}^{H} (\equiv 1 - q_{\pi}^{H})$ . The likelihood of substituent  $\pi$ -electron interactions should be governed by the electron density of this carbon atom. However, the relationships established so far are only applicable to given families of compounds.<sup>6g</sup>

In this work, we developed a general procedure for predicting intrinsic  $\rho_a$ ,  $\rho_F$  and  $\rho_R$  on the basis of

quantum chemical calculations and studied potential deviations from the theoretical model on a wide variety of molecular structures subject to protonation.

### DESCRIPTION OF THE CALCULATIONS

Because of the large number of families (18) and the size of the systems studied and of our present computational facilities, we fully optimized the molecular geometries of neutral and protonated forms at the INDO semi-empirical level by using the GEOMO program considering the gradient method proposed by Rinaldi and co-workers.<sup>17</sup> Then the optimized C-H, N-H and O-H bond distances were properly scaled because the INDO method overestimates them. The scaling factor for the C-H bond, 0.974, was obtained as the ratio between the experiment C-H bond distance of naphthalene and its corresponding INDO value. The scaling factors for the N-H and O-H bond distances (0.935 and 0.924, respectively) were derived from the experimental values for pyrrole and phenol, respectively, and their corresponding INDO values. The scaled molecular geometries were subjected to *ab initio* calculations at the STO-3G level<sup>18</sup> by using the Gaussian 80 program.<sup>19</sup> This mathematical model provided excellent results for similar systems;<sup>20,21</sup> also, the relative protonation energies obtained at the STO-3G//INDO level have been shown to be similar to those provided by the STO-3G//STO-3G level.<sup>22</sup> The minimal basis set has been shown<sup>23</sup> to be suitable for studying  $\delta \Delta E_{\rm p}$  values even considering standard geometries without optimization. Vibrational, BSSE and correlation corrections were assumed to be constant within each family.

The optimization of the geometries of the protonated styrenes studied in this work warrants some comments. This family does not allow the optimization process to be started on the neutral styrene and a proton subsequently to be added above the molecular plane in order to obtain a tetragonal CH<sub>3</sub><sup>+</sup> group. In fact, if this geometry is used as the starting point, then the added proton shifts to the C=C conjugate zone in the optimized geometry and forms a bridged structure which is incompatible with a tetragonal CH<sub>3</sub><sup>+</sup> group. In order to avoid this shortcoming, the protonated forms were optimized from a geometry in which one of the hydrogen atoms in the tetragonal CH<sub>3</sub><sup>+</sup> group was fixed on the molecular plane, the  $C_s$  molecular symmetry thus being preserved as a result. Then, the STO-3G computation was applied to the geometry obtained on turning the tetragonal CH3<sup>+</sup> group in the optimal INDO geometry by 90°. In this way, the role of 'true' proton was assigned to that lying furthest from the molecular plane.

## **RESULTS AND DISCUSSION**

Table 1 lists the experimental  $\delta \Delta G^{\circ}_{(g)}$  and the theoretical  $\delta \Delta E$  [process (1)] data used for the statistical analysis

## EVALUATION OF INTRINSIC REACTION CONSTANTS

|                                                                                                                                                 |                                                                                                                                                         |                                                                                                                                 | (1) X—                                                                                                                                | C<br>CF <sub>3</sub>                                                                                                   |                                                                                                                   | (2) $X-C$                                                                                                                      |                                                                                                                                       |                                                                                                                                               |                                                                                                                                              |                                                                                                                                                              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x                                                                                                                                               | $-\delta\Delta G$                                                                                                                                       | Calc. (1) <sup>a</sup>                                                                                                          | Calc. (2)                                                                                                                             | Calc. (3)                                                                                                              | $-\delta\Delta E$                                                                                                 | Calc. (4)                                                                                                                      | $-\delta\Delta G$                                                                                                                     | Calc. (1) <sup>b</sup>                                                                                                                        | Calc. (2)                                                                                                                                    | Calc. (3)                                                                                                                                                    | $-\delta\Delta E$                                                                                                                          | Calc. (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NMe <sub>2</sub><br>NHMe<br>NH <sub>2</sub><br>Ph<br>SMe<br>OEt<br>OMe<br>OH<br>Et<br>Me<br>H<br>F<br>CCl <sub>3</sub><br>CF <sub>3</sub><br>CN | $ \begin{array}{c} -39.5 \\ -23.4 \\ -28.9 \\ -22.0 \\ -20.0 \\ -16.0 \\ -7.4 \\ -11.9 \\ 0.0 \\ 5.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$ | $ \begin{array}{c} -38.6 \\ -24.2 \\ -28.4 \\ -22.6 \\ -19.2 \\ -16.2 \\ -8.9 \\ -12.6 \\ 0.6 \\ 6.0 \\ \\ \\ \\ \\ \\ \\ \\ -$ | $ \begin{array}{c} -36.5 \\ -27.5 \\ -25.3 \\ -19.7 \\ -11.4 \\ -7.6 \\ 3.2 \\ 2.6 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$ | $ \begin{array}{c} -34.9 \\ -26.2 \\ -30.0 \\ -30.0 \\ -18.5 \\ -8.8 \\ -10.8 \\ 1.1 \\ 6.0 \\ \\ \\ \\ \\ \\ \\ \\ -$ | $ \begin{array}{c} -57.1 \\ -44.2 \\ -41.0 \\ -32.9 \\ -21.0 \\ -15.6 \\ 0.0 \\ -0.8 \\ -5.6 \\ 8.9 \end{array} $ | $ \begin{array}{c} -61.0 \\ -41.8 \\ -38.5 \\ -38.5 \\ -30.1 \\ -21.3 \\ -17.3 \\ -0.6 \\ -1.3 \\ -7.4 \\ 6.7 \\ \end{array} $ | $\begin{array}{c} -38.7 \\ -32.1 \\ -24.8 \\ -27.2 \\ -19.3 \\ -15.5 \\ -5.2 \\ -15.9 \\ -12.5 \\ 0.0 \\ -2.0 \\ 9.3 \\ -\end{array}$ | $\begin{array}{c} -38.9 \\ -31.8 \\ -24.6 \\ -27.5 \\ -19.0 \\ -16.1 \\ -15.7 \\ -12.7 \\ -0.1 \\ (6.4) \\ -1.9 \\ -9.3 \\ (9.7) \end{array}$ | $ \begin{array}{c} -34.5 \\ -27.8 \\ -25.9 \\ -20.2 \\ -18.6 \\ -13.0 \\ -11.4 \\ -9.2 \\ 2.2 \\ \\ 8.6 \\ \\ 8.6 \\ \\ \\ \\ \\ \\ \\ \\ -$ | $ \begin{array}{c} -33.1 \\ -26.8 \\ -30.4 \\ -18.3 \\ -16.8 \\ -10.3 \\ -14.5 \\ -11.5 \\ 1.8 \\ -1 \\ 10.1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$ | $\begin{array}{c} -51.0 \\ -41.7 \\ -39.1 \\ -39.1 \\ -31.1 \\ -28.9 \\ -21.1 \\ -18.9 \\ -15.9 \\ 0.0 \\ 0.3 \\ -8.9 \\ 11.0 \end{array}$ | $ \begin{array}{r} -56.6 \\ -38.8 \\ -35.3 \\ -3.1.3 \\ -27.5 \\ -18.9 \\ -19.5 \\ -16.5 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2 \\ -1.3 \\ 0.2$ |
| $n$ S.d. $R$ $\rho_{\rm F}$ $\rho_{\rm a}$ $\rho_{\rm R}$ $A_0$                                                                                 |                                                                                                                                                         | $10^{a}$ 1.1 0.998 31.5 ± 2.9 26.7 ± 1.3 47.9 ± 1.9 0.6 ± 0.9                                                                   | 8<br>3·8<br>0·972<br>—<br>—<br>—                                                                                                      | 8<br>3·4<br>0·981<br><br><br>                                                                                          |                                                                                                                   | $ \begin{array}{r} 10\\ 2.7\\ 0.995\\ 34.9 \pm 4.7\\ 29.5 \pm 3.4\\ 79.5 \pm 4.1\\ -0.6 \pm 2.2 \end{array} $                  |                                                                                                                                       | $ \begin{array}{r}  13^{b} \\  0.4 \\  1.000 \\  35.5 \pm 0.6 \\  24.9 \pm 0.4 \\  49.1 \pm 0.4 \\  -0.1 \pm 0.3 \\ \end{array} $             | 10<br>4·1<br>0·960<br>—<br>—<br>—                                                                                                            | 10<br>3·4<br>0·976<br>—<br>—<br>—                                                                                                                            |                                                                                                                                            | $12 \\ 2.9 \\ 0.993 \\ 37.8 \pm 4.6 \\ 26.5 \pm 3.5 \\ 74.1 \pm 3.9 \\ -1.3 \pm 2.1 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                 |                                                                                                                                                         |                                                                                                                                 |                                                                                                                                       | <u>Он</u> ,                                                                                                            |                                                                                                                   |                                                                                                                                |                                                                                                                                       |                                                                                                                                               |                                                                                                                                              | 011+                                                                                                                                                         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| OH. |
|-----|
| X-C |
| Сн, |

(3)



| X                    | $-\delta\Delta G$ | Calc. (1) <sup>b</sup> | Calc. (2) | Calc. (3) | $-\delta\Delta E$ | Calc. (4)      | $-\delta\Delta G$ | Calc. (1) <sup>d</sup> | Calc. (2) | Calc. (3) | $-\delta\Delta E$ | Calc. (4)      |
|----------------------|-------------------|------------------------|-----------|-----------|-------------------|----------------|-------------------|------------------------|-----------|-----------|-------------------|----------------|
| NMe,                 | -30.8             | -31.3                  | -27.9     | -26.8     | -49.2             | -53.4          | (-21.0)           | -21.5                  | -21.7     | -19.5     | -35.2             | -38.4          |
| NH,                  | -20.0             | -18.9                  | -22.4     | -21.8     | -40.5             | -36.8          |                   |                        |           |           | -28.3             | -26.4          |
| Ph                   | $(-19.5)^{\circ}$ |                        | -18.1     | -21.9     | -33.7             | -32.2          | (-14.1)           | -15.4                  | -13.8     | -16.5     | -23.7             | -21.5          |
| OEt                  | -14.2             | -13.8                  |           |           |                   |                | -13.0             | -12.4                  | _         |           |                   |                |
| OMe                  | -11.3             | -11.3                  | -13.6     | -11.9     | -26.5             | -25.8          | -10.5             | -10.1                  | -11.3     | -9.9      | -20.1             | -17.5          |
| OH                   | -4.0              | -4.9                   | -8.7      | -6.1      | -18.8             | -17.7          |                   |                        | _         |           | -12.0             | -11.6          |
| Et                   | -13.0             | -13.3                  |           |           |                   |                | -10.5             | -11.0                  |           |           |                   | _              |
| Me                   | -10.3             | -10.6                  | -6.4      | -9.0      | -15.2             | -15.2          | -8.2              | -8.8                   | -4.2      | -6.7      | -9.8              | -10.6          |
| н                    | 0.0               | 0.3                    | 3.2       | 2.3       | 0.0               | -1.4           | 0.0               | 0.8                    | 2.5       | 0.6       | 0.0               | -1.1           |
| F                    |                   |                        |           |           | 1.6               | 0.6            | 9.4               | 8.0                    | 3.5       | 6.1       | 1.4               | 2.5            |
| CCl <sub>2</sub>     | 0.0               | 0.4                    | _         |           | —                 |                | 2.0               | 1.8                    |           |           | _                 |                |
| CF.                  | 10.4              | 10.3                   | 8.9       | 10.0      | 9.0               | 9.5            | 9.2               | 10.2                   | 8.4       | 8.2       | 8.6               | 10.2           |
| CN                   |                   |                        | _         |           | 11.5              | 10.7           | 11.4              | 11.4                   | 12.8      | 13.8      | 14.9              | 12.5           |
| NO <sub>2</sub>      | _                 |                        | _         |           | 28.4              | (17.4)         | _                 |                        |           | _         | _                 |                |
| n                    |                   | 10°                    | 8         | 8         |                   | 10             |                   | 9 <sup>d</sup>         | 8         | 8         |                   | 10             |
| S.d.                 |                   | 0.7                    | 3.5       | 2.8       |                   | 2.6            |                   | 1.0                    | 3.9       | 2.4       |                   | 2.4            |
| R                    |                   | 0.999                  | 0.968     | 0.983     |                   | 0.995          |                   | 0.997                  | 0.933     | 0.986     |                   | 0.993          |
| ρ <sub>e</sub>       | _                 | $35.1 \pm 1.3$         |           |           |                   | $37.9 \pm 4.4$ |                   | $32.2 \pm 1.5$         |           |           |                   | $33.7 \pm 4.1$ |
| ρ.,                  |                   | $22.0 \pm 1.1$         | _         |           |                   | $23.4 \pm 3.1$ |                   | $18.8 \pm 1.5$         |           |           |                   | $14.1 \pm 3.0$ |
| ρ <sub>p</sub>       | _                 | $39.7 \pm 0.9$         | _         |           | —                 | $71.2 \pm 3.8$ | _                 | $37.5 \pm 2.1$         |           |           |                   | $54.0 \pm 3.6$ |
| <u>A<sub>0</sub></u> |                   | $0.3 \pm 0.5$          | —         |           |                   | $-1.4 \pm 2.0$ |                   | $-0.8 \pm 0.8$         |           |           | —                 | $-1.3 \pm 1.9$ |

(Continued)

Table 1. Continued

|                                                                |                   |                                                    | (5) X—       | OH <sup>+</sup><br>NMe₂ |                         | $(6) \qquad \qquad$ |                           |                                           |                |                |                     |                                                   |
|----------------------------------------------------------------|-------------------|----------------------------------------------------|--------------|-------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|----------------|----------------|---------------------|---------------------------------------------------|
| x                                                              | $-\delta\Delta G$ | Calc. (1) <sup>e</sup>                             | Calc. (2)    | Calc. (3)               | $-\delta\Delta E$       | Calc. (4)                                                                                                                                  | $-\delta\Delta G^{\rm f}$ | Calc. (1)                                 | Calc. (2)      | Calc. (3)      | $-\delta\Delta E$   | Calc. (4)                                         |
| NMe <sub>2</sub><br>NH <sub>2</sub><br>Ph                      | -9·7<br>-10·2     | -9·4<br>                                           | -11.3        | -7.5<br>                | -26.2<br>-20.8<br>-18.0 | 28.7<br>18.8<br>17.6                                                                                                                       | -25·2<br>-17·1            | -24·9<br>-17·4                            | -23·1<br>-19·8 | -22.9<br>-19.9 | 33.9<br>29.1        | -35·3<br>-26·5                                    |
| OMe<br>OH                                                      | 1.7<br>           | 0.7                                                | -4·4         | -1.3                    | -13·8<br>-6·6           | -11.6<br>-6.5                                                                                                                              | -11.4                     | -11.4                                     | -12.2          | -11.7          | -18·3<br>-14·0      | -18·4<br>-14·4                                    |
| Me<br>H                                                        | -4·8<br>0·0       | -5·6<br>-0·4                                       | -1·3<br>3·4  | -5·1<br>0·9             | -8·4<br>0·0             | -8.7<br>-0.6                                                                                                                               | $-5.2 \\ 0.0$             | 5·4<br>0·2                                | -3·5<br>0·7    | -4·3<br>0·0    | -5·9<br>0·0         | -6.1<br>-0.1                                      |
| r<br>CF <sub>3</sub><br>CN                                     | 8·1<br>12·8       | 9.8<br>11.9                                        | 8·1<br>10·1  | 9.0<br>12.6             | 8·4<br>12·1             | 9.5<br>11.5                                                                                                                                | <br>9.6                   | <br>9.7                                   |                | <br>9.4        | -2.4<br>8.8<br>11.2 | -3.2<br>8.9<br>11.6                               |
| NO <sub>2</sub><br>n                                           |                   | 14°                                                | 7            | 7                       | _                       | 10                                                                                                                                         |                           | (12·3)<br>8                               | 6              | 6              | 18·6                | (13·7)<br>9                                       |
| S.d.<br>R                                                      |                   | 1.0<br>0.995<br>$30.1 \pm 1.2$                     | 4·1<br>0·905 | 2·0<br>0·982            | _                       | 1.8<br>0.994                                                                                                                               |                           | 0.3<br>1.000                              | 2.0<br>0.989   | 2·2<br>0·991   | _                   | 1.4<br>0.998<br>$23.1 \pm 2.5$                    |
| $     \rho_{\rm F}   $ $     \rho_a   $ $     \rho_{\rm D}   $ |                   | $30.1 \pm 1.2$<br>$12.5 \pm 1.0$<br>$10.2 \pm 1.2$ |              |                         | _                       | $31.0 \pm 3.1$<br>$14.2 \pm 2.2$<br>$39.0 \pm 2.7$                                                                                         |                           | $21.5 \pm 0.6$<br>7.4 ± 0.7<br>37.5 ± 0.4 |                |                | _                   | $23.1 \pm 2.5$<br>$4.6 \pm 2.5$<br>$55.5 \pm 2.1$ |
| $A_0$                                                          |                   | $-0.4 \pm 0.7$                                     |              |                         |                         | $-0.6 \pm 1.4$                                                                                                                             |                           | $0.2 \pm 0.3$                             |                |                |                     | $-0.1 \pm 1.1$                                    |

(8) p-XPhC

(7) p-XPhC(CH<sub>3</sub>)<sub>2</sub><sup>+</sup>

| x                | $-\delta\Delta G^{\circ}$ | Calc. (1)      | Calc. (2) | Calc. (3) | $-\delta\Delta E$ | Calc. (4)      | $-\delta\Delta G^{\circ}$ | Calc. (1)      | Calc. (2) | Calc. (3) | $-\delta\Delta E$ | Calc. (4)      |
|------------------|---------------------------|----------------|-----------|-----------|-------------------|----------------|---------------------------|----------------|-----------|-----------|-------------------|----------------|
| NMe <sub>2</sub> | -23.0                     | -22.4          | -21.7     | -21.6     | -24.8             | -25.1          | -21.1                     | 20.9           | -19.5     | -19.4     | -19.6             | -21.0          |
| NH <sub>2</sub>  | -15.2                     | -16.1          | -17.1     | -17.1     | -19.7             | -18.7          |                           |                |           |           | -18.0             | -16.1          |
| OMe              | -10.5                     | -10.6          | -9.9      | -9.8      | -11.6             | -12.6          | -10.2                     | 10.0           | -10.4     | -10.4     | -10.6             | -10.9          |
| OH               |                           | _              |           |           | -9.6              | -9.6           | -6.9                      | -7.1           | -8.4      | -8.3      | -8.6              | -8.6           |
| Me               | -4.1                      | -4.2           | -3.9      | -4.2      | -4.9              | -4.5           | -4.5                      | -4.3           | -4.4      | -4.7      | -4.6              | -3.8           |
| н                | 0.0                       | 0.2            | 0.4       | 0.2       | 0.0               | -0.3           | 0.0                       | 0.2            | 0.2       | 0.0       | 0.0               | -0.8           |
| F                | 0.1                       | 0-4            | -0.9      | -0.7      | -1.5              | -1.2           | 0.6                       | 0.2            | -1.3      | -1.1      | -1.5              | -1.8           |
| CF,              | 7.0                       | 7.4            | 7.6       | 7.6       | 8.0               | 7.8            | 5.9                       | 6.1            | 6.5       | 6.6       | 6.3               | 6.3            |
| CN               | 9.8                       | 9.4            | 9.5       | 9.7       | 10.2              | 10.4           | 7.6                       | 7.6            | 8.9       | 9.1       | 8.6               | 8.7            |
| NO <sub>2</sub>  | 11.5                      | 11.3           |           |           |                   |                | 8.7                       | 9.5            | (13.8)    | (14.3)    | 13.5              | (9.9)          |
| $n^{-}$          |                           | 12             | 8         | 8         | <u></u>           | 9              |                           | 13             | 8         | 8         |                   | 9              |
| S.d.             |                           | 0.5            | 1-1       | 1.2       | _                 | 0.7            |                           | 0.5            | 1.3       | 1.4       |                   | 1.2            |
| R                |                           | 0.999          | 0.996     | 0.996     |                   | 0.999          | _                         | 0.999          | 0.992     | 0.992     | —                 | 0.995          |
| $\rho_{\rm F}$   |                           | $19.0 \pm 0.6$ |           |           |                   | $20.0 \pm 1.2$ |                           | $16.6 \pm 0.6$ |           |           |                   | $16.7 \pm 2.1$ |
| $\rho_{a}$       |                           | $4.6 \pm 0.6$  |           |           |                   | $2.7 \pm 1.2$  |                           | $5.0 \pm 0.6$  |           |           |                   | $0.9 \pm 2.1$  |
| $\rho_{\rm R}$   | <u> </u>                  | $35.0 \pm 0.7$ |           |           |                   | $39.9 \pm 1.0$ |                           | $31.6 \pm 0.7$ |           |           |                   | $33.5 \pm 1.8$ |
| $A_0$            |                           | $0.2 \pm 0.4$  | —         |           | _                 | $-0.3 \pm 0.6$ |                           | $0.0 \pm 0.3$  |           |           |                   | $-0.8 \pm 1.0$ |

(Continued)

|                    |                           | (6                     | 9) p-XPt        | OH'                     |                   | (10) $p$ -XPhC OCH              |                           |                |           |           |                   |                                 |
|--------------------|---------------------------|------------------------|-----------------|-------------------------|-------------------|---------------------------------|---------------------------|----------------|-----------|-----------|-------------------|---------------------------------|
| x                  | $-\delta\Delta G^{\circ}$ | Calc. (1) <sup>e</sup> | Calc. (2)       | Calc. (3)               | $-\delta\Delta E$ | Calc. (4)                       | $-\delta\Delta G^{\circ}$ | Calc. (1)      | Calc. (2) | Calc. (3) | $-\delta\Delta E$ | Calc. (4)                       |
| NMe <sub>2</sub>   | -18.1                     | -17.9                  | _12.4           | - 12.4                  | -18.7             | -19·0                           | -8.0                      |                |           |           | -14.9             | -15.6                           |
| OMe                | -8.1                      | -8.3                   | -7.1            | -6.8                    |                   | -9.2                            | -4.8                      | -0·2<br>-4·7   | -4.0      | -3.6      | -15-5             | -7.5                            |
| OH                 | -5.4                      | -5.8                   | -5.5            | -5.3                    | -6.8              | -6.9                            | -3.1                      | -2.8           | -2.7      | -2.3      | -5.0              | -5.7                            |
| Me                 | -3.9                      | -3.8                   | -2.9            | -3.5                    | -3.7              | -3.4                            | -2.3                      | -2.8           | -1.2      | -2.0      | -3.0              | -2.8                            |
| Н                  | 0.0                       | -0.1                   | 0.2             | -0.3                    | 0.0               | -0.3                            | 0.0                       | -0.2           | 1.1       | 0.3       | 0.0               | -0.4                            |
| F                  | 0.6                       | 0.8                    | -0.2            | 0.1                     | -0.5              | -0.3                            | 2.2                       | 2.3            | 1.2       | 1.7       | 0.1               | 0.0                             |
| CF <sub>3</sub>    | 5.8                       | 5.9                    | 5.9             | 5.7                     | 6.6               | 6.6                             | 5.7                       | 5.7            | 5.4       | 5.4       | 5.5               | 5.9                             |
| CN                 | 8.2                       | 7.6                    | 8.0             | 8.0                     | 8.9               | 8.9                             | 8.1                       | 7.7            | 7.3       | 7.6       | 8.0               | 8∙0                             |
| NO <sub>2</sub>    | 8.8                       | 9.3                    | (11.2)          | (11.8)                  | 13.0              | (10.1)                          | 8.9                       | 8.9            | (9.9)     | (10.7)    | 11.4              | (9.0)                           |
| n                  |                           | 14                     | 8               | 8                       |                   | 9                               |                           | 13             | 8         | 8         |                   | 9                               |
| S.d.               | —                         | 0.3                    | 0.8             | 0.8                     |                   | 0.5                             |                           | 0.3            | 1.1       | 1.0       |                   | 1.0                             |
| R                  |                           | 0.999                  | 0.994           | 0.995                   | _                 | 0.999                           |                           | 0.998          | 0.983     | 0.988     | —                 | 0.994                           |
| $\rho_{\rm F}$     |                           | $10.1 \pm 0.3$         |                 |                         |                   | $10.8 \pm 0.9$                  |                           | $13.3 \pm 0.3$ |           |           |                   | $14.9 \pm 1.8$<br>$1.1 \pm 1.9$ |
| $\rho_a$           |                           | $27.4 \pm 0.5$         |                 |                         |                   | $1.0 \pm 0.9$<br>$30.8 \pm 0.8$ |                           | $18.6 \pm 0.5$ |           |           | _                 | $1.1 \pm 1.0$<br>$25.3 \pm 1.5$ |
| $P_{R}$            |                           | $-0.1 \pm 0.2$         |                 | _                       |                   | $-0.3 \pm 0.4$                  |                           | $-0.2 \pm 0.2$ |           |           | _                 | $-0.4 \pm 0.8$                  |
|                    |                           | (1                     | 1) <i>p</i> -XP | hC'<br>NMe <sub>2</sub> |                   |                                 |                           |                | (12) 4-X  | C₅H₄NH⁺   |                   |                                 |
| <u>x</u>           | $-\delta\Delta G$         | Calc. (1)              | Calc. (2)       | Calc. (3)               | $-\delta\Delta E$ | Calc. (4)                       | $-\delta\Delta G$         | Calc. (1)      | Calc. (2) | Calc. (3) | $-\delta\Delta E$ | Calc. (4)                       |
| NMe <sub>2</sub>   |                           | <u> </u>               |                 |                         | -15.5             | -14.1                           | -15.6                     | -16.3          | -15.8     | -15.4     | -19.3             | -19-5                           |
| NH <sub>2</sub>    | -5.1                      | -5.9                   | -6.1            | -5.8                    | -9.6              | -10.2                           | -11.4                     | -11.0          | -11.8     | -11.6     | -14.8             | -14.2                           |
| OMe                | -3.1                      | -2.9                   | -2.6            | -2-2                    | -4.9              | -6.1                            | -6.3                      | -0.1           | -6.2      | -3.1      | -8.3              | -8.9                            |
| Me                 | -1.6                      | -2.1                   | _0.6            | _1.3                    | - 3.4             | -4.1                            | _3.5                      | _3.6           | _2.5      | _3.8      | -0.0              | -3.0                            |
| H                  | 0.0                       | -0.2                   | 1.0             | 0.2                     | -2.1              | 0.1                             | 0.0                       | -0.1           | 1.3       | 0.2       | 0.0               | -0.5                            |
| F                  | 1.9                       | 3.0                    | 1.3             | 1.7                     | 0.4               | 1.4                             | 4.2                       | 3.9            | 2.1       | 2.9       | 0.9               | 1.1                             |
| CO <sub>2</sub> Me |                           |                        | -               |                         |                   |                                 | 2.1                       | 2.7            |           | _         |                   | —                               |
| CF,                | 6.2                       | 5.7                    | 5.3             | 5.2                     | 5.8               | 6.8                             | 8.2                       | 8.3            | 8.1       | 8.1       | 7.6               | 8.0                             |
| CN                 | 8.2                       | 7.6                    | 8.2             | 8.7                     | 9.8               | 9-1                             | 11.1                      | 10.7           | 11-1      | 11.8      | 11.1              | 10.8                            |
| $NO_2$             | 9.2                       | 8.8                    | (9.5)           | (10.1)                  | 11.5              | (10-2)                          | 12.6                      | 12.8           | —         |           | —                 | —                               |
| n                  |                           | 12                     | 7               | 7                       | _                 | 9                               | _                         | 15             | 8         | 8         | _                 | 9                               |
| S.d.               | —                         | 0.6                    | 1.0             | 0.8                     |                   | 1.2                             |                           | 0.5            | 1.1       | 0.8       | _                 | 0.5                             |
| R                  | —                         | 0.994                  | 0.984           | 0.990                   |                   | 0.992                           |                           | 0.999          | 0.994     | 0.998     | _                 | 0.999                           |
| $\sigma_{\rm F}$   |                           | $14.8 \pm 0.8$         | —               | _                       |                   | $16.1 \pm 2.0$                  |                           | $21.8 \pm 0.6$ |           | -         |                   | $20.8 \pm 0.9$                  |
| $ ho_{a}$          |                           | $1.9 \pm 0.8$          |                 |                         |                   | $1.4 \pm 2.0$                   |                           | $5.0 \pm 0.5$  | _         | —         | —                 | $2.5 \pm 0.9$                   |
| $\rho_{\rm R}$     | _                         | $14.7 \pm 1.1$         | _               |                         |                   | $23.7 \pm 1.8$                  |                           | $25.7 \pm 0.6$ |           |           |                   | $31.2 \pm 0.8$                  |
| A <sub>0</sub>     |                           | $-0.1 \pm 0.5$         |                 |                         |                   | $0.1 \pm 0.9$                   | _                         | $0.1 \pm 0.3$  |           |           |                   | $-0.5 \pm 0.4$                  |

Table 1. Continued

(Continued)

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                   | (1                        | 13) <i>p-</i> XF | 'nNMe₂H⁺            |                       | (14) 2-XC₃H₄NH <sup>+</sup> |                   |                |           |           |                   |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|---------------------------|------------------|---------------------|-----------------------|-----------------------------|-------------------|----------------|-----------|-----------|-------------------|----------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X                  | $-\delta\Delta G$ | Calc. (1)                 | Calc. (2)        | Calc. (3)           | $-\delta\Delta E_{p}$ | Calc. (4)                   | $-\delta\Delta G$ | Calc. (1)      | Calc. (2) | Calc. (3) | $-\delta\Delta E$ | Calc. (4)                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NMe <sub>2</sub>   | -7.8              | -8.0                      | -7.4             | -7.5                | -7.5                  | -7.7                        | -8.8              | -9.2           | -8.3      | -7.3      | -12.1             | -13.2                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NH.                | -4.6              | -5.4                      | -5.0             | -5.0                | -5.1                  | -5.8                        | -4.8              | -4.4           | -6.0      | -5.4      | _9.5              | -8.7                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OMe                | -3.3              | 2.5                       | -2.9             | -3.0                | -3.0                  | -2.5                        | -0.6              | -0.1           | -1.7      | -1.0      | -4.8              | -4.0                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OH                 |                   |                           |                  |                     | -3.1                  |                             |                   |                |           |           | -0.8              | 1.4                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Me                 | -2.1              | _2.2                      | -2.6             | -2.4                | -2.7                  | -1.6                        | - 3.8             | -3.8           | -2.5      | -4.6      | -5.7              | -4.5                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | u vic              | 0.0               | -0.4                      | 0.1              | 0.2                 | 0.0                   | -1.1                        | 0.0               |                | 2.6       | 0.0       | 0.0               | -1.4                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                  | 2.2               | -0.4                      | 1.0              | 1.8                 | 1.9                   | 2.5                         | 10.2              | -0.1           | 2.0       | 8.4       | 5.1               | 5.3                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | 2.2               | 5.0                       | 1.9              | 1.0                 | 2.4                   | 2.3                         | 10.2              | 9.0            | 1.2       | 0.4       | 5.1               | 3.3                        |
| Cr3 b-9 b-3 b-3 b-3 b-3 b-3 b-3 b-5 b-5 b-6 9-6 10-1 9-6 9-3 $n^{-7}$ 8-6<br>CN 10-0 8-5 10-3 10-2 10-3 9-6 13-2 12-9 14-1 14-6 12-6 11-7<br>NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO <sub>2</sub> Me | 3.1               | 4.1                       | 3.3              | 3.3                 | 3.4                   | 3.7                         | 0.0               | 10.1           | 0.6       | 0.2       |                   | 0.6                        |
| CN 10-0 8-3 10-3 10-2 10-3 9-6 13-2 12-9 14-1 14-6 12-6 11-7<br>n =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CF <sub>3</sub>    | 6.9               | 6.3                       | 0.2              | 6.5                 | 0.0                   | 0.0                         | 9.6               | 10.1           | 9.6       | 9.3       | 1.1               | 8.0                        |
| NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CN                 | 10.0              | 8.5                       | 10.3             | 10.2                | 10.3                  | 9.6                         | 13.2              | 12.9           | 14.1      | 14.0      | 12.6              | 11./                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $NO_2$             |                   |                           | _                |                     | 13-1                  | 10.0                        | —                 |                | _         | _         |                   | _                          |
| S.d. $-$ 0.8 0.4 0.4 0.4 $-$ 0.5 $-$ 0.4 1.9 1.4 $-$ 1.3<br>R 0.993 0.998 0.998 $-$ 0.999 $-$ 0.999 0.977 0.989 $-$ 0.999<br>$\rho_{\rm F}$ 144±1.1 $ -$ 16.5±1.6 $-$ 27.5±0.2 $ -$ 25.2±2.2<br>$\rho_{a}$ $-$ 2.1±1.1 $  -$ 16.5±1.5 $-$ 7.6±0.5 $ -$ 4.2±2.2<br>$\rho_{a}$ $-$ 12.7±1.0 $  -$ 14.1±1.3 $-$ 13.3±0.5 $ -$ 19.4±1.9<br>$A_{0}$ $-$ 0.4±0.6 $  -$ 1.1±0.7 $-$ 0.1±0.3 $ -$ 1.94±1.9<br>$A_{0}$ $-$ 0.4±0.6 $  -$ 1.1±0.7 $-$ 0.1±0.3 $  -$ 1.4±1.4<br>$\frac{(15) \ m-XPhCMe_{2}^{i}}{}$<br>$\frac{(15) \ m-XPhCMe_{2}^{i}}{}$<br>$\frac{(15) \ m-XPhCMe_{2}^{i}}{}$<br>$\frac{(15) \ m-XPhCMe_{2}^{i}}{}$<br>$X \ -\frac{\delta\Delta G}{Calc. (1) \ Calc. (2) \ Calc. (3) \ -\delta\Delta E \ Calc. (4)}{}$<br>$\frac{(15) \ m-XPhCMe_{2}^{i}}{}$<br>$X \ -\frac{\delta\Delta G}{Calc. (1) \ Calc. (2) \ Calc. (3) \ -\delta\Delta E \ Calc. (4)}{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                  | —                 | 14                        | 9                | 9                   |                       | 9                           |                   | 13             | 8         | 8         |                   | 9                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S.d.               |                   | 0.8                       | 0.4              | 0.4                 | —                     | 0.5                         |                   | 0.4            | 1.9       | 1.4       |                   | 1.3                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R                  | —                 | 0.993                     | 0.998            | 0.998               |                       | 0.999                       |                   | 0.999          | 0.977     | 0.989     |                   | 0.992                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ ho_{ m F}$       | —                 | $14.4 \pm 1.1$            |                  | _                   | —                     | $16.5 \pm 1.6$              | —                 | $27.5 \pm 0.2$ |           |           |                   | $25 \cdot 2 \pm 2 \cdot 2$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\rho_a$           |                   | $2 \cdot 1 \pm 1 \cdot 1$ |                  |                     |                       | $-1.5 \pm 1.5$              | —                 | 7·6±0·5        |           |           |                   | $4.2 \pm 2.2$              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\rho_{\rm R}$     |                   | $12.7 \pm 1.0$            |                  |                     |                       | $14.1 \pm 1.3$              | _                 | $13.3 \pm 0.5$ | —         |           |                   | $19.4 \pm 1.9$             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $A_0$              |                   | $-0.4 \pm 0.6$            | —                |                     | _                     | $-1.1 \pm 0.7$              |                   | $-0.1 \pm 0.3$ |           | -         |                   | $-1.4 \pm 1.0$             |
| $X - \delta \Delta G  \text{Calc. (1) Calc. (2) Calc. (3)} - \delta \Delta E  \text{Calc. (4)}$ $NMe_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                   |                           | (15) m-X         | (PhCMe <sub>2</sub> |                       |                             |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x                  | $-\delta\Delta G$ | Calc. (1)                 | Calc. (2)        | Calc. (3)           | $-\delta\Delta E$     | Calc. (4)                   |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                   |                           |                  |                     |                       |                             |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NMe <sub>2</sub>   |                   |                           |                  |                     | -3.7                  | -3.7                        |                   |                |           |           |                   |                            |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NH <sub>2</sub>    |                   |                           |                  |                     | -2.1                  | -1.9                        |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OMe                | -2.1              | -1.7                      | 0.2              | -1.2                | 1.0                   | 0.7                         |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ОН                 | —                 |                           |                  |                     | 2.1                   | 2.0                         |                   |                |           |           |                   |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Me                 | -1.8              | -2.1                      | -2.5             | -2.0                | -1.7                  | -1.3                        |                   |                |           |           |                   |                            |
| F $5 \cdot 1$ $4 \cdot 9$ $4 \cdot 5$ $3 \cdot 7$ $5 \cdot 2$ $5 \cdot 4$ CF <sub>3</sub> $6 \cdot 2$ $6 \cdot 8$ $5 \cdot 8$ $6 \cdot 3$ $6 \cdot 5$ $6 \cdot 9$ CN $9 \cdot 0$ $8 \cdot 7$ $9 \cdot 2$ $9 \cdot 5$ $9 \cdot 8$ $9 \cdot 5$ $3, 5 \cdot (CF_3)_2$ $12 \cdot 4$ $13 \cdot 3$ $    NO_2$ $11 \cdot 1$ $10 \cdot 3$ $     n$ $ 10 \cdot 6$ $6$ $ 9$ $S.d.$ $ 0 \cdot 7$ $1 \cdot 3$ $1 \cdot 0$ $ 0 \cdot 4$ $R$ $ 0 \cdot 995$ $0 \cdot 967$ $0 \cdot 986$ $ 0 \cdot 9997$ $\rho_F$ $ 16 \cdot 9 \pm 0 \cdot 7$ $  17 \cdot 2 \pm 0 \cdot 7$ $\rho_a$ $ 3 \cdot 8 \pm 1 \cdot 0$ $  0 \cdot 9 \pm 0 \cdot 7$ $\rho_a$ $0 \cdot 3 \cdot 2 \pm 1 \cdot 7$ $  7 \cdot 2 \pm 0 \cdot 6$ $0 \cdot 4 \pm 0 \cdot 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                  | 0.0               | 0.3                       | -0.8             | 0.1                 | 0.0                   | -0.4                        |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F                  | 5.1               | 4.9                       | 4.5              | 3.7                 | 5.2                   | 5-4                         |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CF,                | 6.2               | 6.8                       | 5⋅8              | 6.3                 | 6.5                   | 6.9                         |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CN                 | 9.0               | 8.7                       | 9.2              | 9.5                 | 9.8                   | 9.5                         |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $3,5-(CF_3)_2$     | 12.4              | 13.3                      |                  |                     |                       |                             |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO <sub>2</sub>    | 11.1              | 10.3                      |                  |                     |                       | —                           |                   |                |           |           |                   |                            |
| S.d.       -       0.7       1.3       1.0       -       0.4 $R$ -       0.995       0.967       0.986       -       0.997 $\rho_F$ -       16.9 \pm 0.7       -       -       -       17.2 \pm 0.7 $\rho_a$ -       3.8 \pm 1.0       -       -       -       0.9 \pm 0.7 $\rho_R$ -       13.2 \pm 1.7       -       -       7.2 \pm 0.6 $Q_2 \pm 0.5$ -       0.4 \pm 0.3       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                  |                   | 10                        | 6                | 6                   |                       | 9                           |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S.d.               |                   | 0.7                       | 1.3              | 1.0                 |                       | 0-4                         |                   |                |           |           |                   |                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R                  |                   | 0.995                     | 0.967            | 0.986               |                       | 0.997                       |                   |                |           |           |                   |                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\rho_{\rm F}$     | _                 | $16.9 \pm 0.7$            |                  |                     |                       | $17.2 \pm 0.7$              |                   |                |           |           |                   |                            |
| $\rho_{\rm R} = -13.2 \pm 1.7 7.2 \pm 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ρ.,                |                   | $3.8 \pm 1.0$             |                  |                     |                       | $0.9 \pm 0.7$               |                   |                |           |           |                   |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ρ <sub>Β</sub>     | _                 | $13.2 \pm 1.7$            |                  |                     |                       | $7.2 \pm 0.6$               |                   |                |           |           |                   |                            |
| $A_0 - 0.5 \pm 0.5 $ | A <sub>0</sub>     |                   | $0.3 \pm 0.5$             |                  |                     | _                     | $-0.4 \pm 0.3$              |                   |                |           |           |                   |                            |

Table 1. Continued

(Continued)

|                    |                   | ()             | 16) <i>m</i> -XI | OH <sup>+</sup><br>PhC H |                   | (17) 3-XC₅H₄NH <sup>*</sup> |                   |                |           |           |                   |                |
|--------------------|-------------------|----------------|------------------|--------------------------|-------------------|-----------------------------|-------------------|----------------|-----------|-----------|-------------------|----------------|
| х                  | $-\delta\Delta G$ | Calc. (1)      | Calc. (2)        | Calc. (3)                | $-\delta\Delta E$ | Calc. (4)                   | $-\delta\Delta G$ | Calc. (1)      | Calc. (2) | Calc. (3) | $-\delta\Delta E$ | Calc. (4)      |
| NMe,               | _                 |                | _                |                          | -3.9              |                             | -9.7              | -10.1          | -8.9      | -9.7      | -7.0              | -6.3           |
| NH <sub>2</sub>    |                   |                |                  |                          | -1.2              |                             |                   |                |           |           | -2.7              | -3.8           |
| OMe                | -2.7              | -2.3           | -0.9             | -1.1                     | -0.4              | -1.5                        | -3.1              | -2.0           | -1.9      | -2.5      | -1.1              | -0.5           |
| ОН                 | -0.5              | -0.6           | -2.2             | -2.4                     | -1.8              | -0.1                        |                   |                |           |           | 1.2               | 1.4            |
| Me                 | -2.8              | -2.4           | -2.0             | -1.8                     | -1.6              | -1.6                        | -3.0              | -3.0           | -4.1      | -3.2      | -3.0              | -2.4           |
| Н                  | 0.0               | -0.3           | -0.5             | -0.3                     | 0.0               | -0.2                        | 0.0               | -0.3           | -0.6      | 0.3       | 0.0               | -0.6           |
| F                  | 4.0               | 3.7            | 4.1              | 3.9                      | 4.7               | 3.9                         | 6.9               | 6.4            | 6.4       | 5.8       | 6.0               | 6.2            |
| CO <sub>2</sub> Me |                   |                |                  |                          | _                 |                             | 2.4               | 2.5            |           |           |                   |                |
| COMe               |                   |                | <u></u>          |                          | _                 |                             | 3.8               | 3.6            |           |           |                   |                |
| CF <sub>3</sub>    | 5.6               | 5.7            | 4.9              | 5.0                      | 5.7               | 6.3                         | 8.5               | 9.0            | 7.7       | 8.0       | 7.1               | 7.9            |
| CN                 | 7.6               | 7.4            | 7.9              | 7.9                      | 8.8               | 8.5                         | 11.9              | 11.9           | 13.0      | 12.8      | 11.6              | 10.7           |
| NO <sub>2</sub>    | 8.4               | 8.8            |                  |                          | 11.9              | (9.5)                       |                   |                |           |           |                   |                |
| n                  |                   | 10             | 7                | 7                        |                   | 7                           |                   | 12             | 7         | 7         | _                 | 9              |
| S.d.               |                   | 0.4            | 1.2              | 1.4                      | _                 | 1.3                         |                   | 0.5            | 1.1       | 0.8       | _                 | 0.9            |
| R                  |                   | 0.998          | 0.962            | 0.963                    |                   | 0.974                       |                   | 0.997          | 0.992     | 0.996     |                   | 0.993          |
| $\rho_{\rm F}$     | _                 | $15.3 \pm 0.6$ |                  |                          | —                 | $15.6 \pm 2.5$              | _                 | $23.3 \pm 0.8$ | _         |           |                   | $21.0 \pm 1.6$ |
| $\rho_a$           |                   | $3.5 \pm 0.5$  |                  |                          |                   | $1.4 \pm 3.0$               |                   | $3.8 \pm 0.7$  |           |           | —                 | $2.7 \pm 1.6$  |
| $\rho_{\rm R}$     |                   | $12.6 \pm 0.8$ | _                |                          | _                 | $11.8 \pm 3.3$              |                   | $16.3 \pm 0.8$ |           | _         |                   | $11.0 \pm 1.3$ |
| $A_0$              |                   | $-0.3 \pm 0.3$ | —                | —                        | —                 | $0.2 \pm 1.1$               |                   | $-0.3 \pm 0.4$ | —         | —         | _                 | $-0.6\pm0.7$   |
|                    |                   |                |                  | OH                       |                   |                             |                   |                |           |           |                   |                |

Table 1. Continued

(18) *m*-XPhC

|      |   |     |   | 6 | OMe |  |
|------|---|-----|---|---|-----|--|
| (1)0 | ~ | (2) | ~ |   | (0) |  |

| X                  | $-\delta\Delta G$ | Calc. (1) <sup>g</sup> | Calc. (2 | c) Calc. (3) | $-\delta\Delta E$ | Calc. (4)      |
|--------------------|-------------------|------------------------|----------|--------------|-------------------|----------------|
| NMe,               |                   | _                      | _        |              | -2.8              | -3.2           |
| NH <sub>2</sub>    |                   |                        |          |              | -2.0              | -1.9           |
| OMe                | -1.4              | -1.3                   |          | -1.0         | 0.0               | 0.3            |
| OH                 | 0.2               | 0.1                    |          | -0.1         | 0.8               | 1.2            |
| Me                 | -1.4              | -1.5                   |          | -1.3         | -1.2              | -0.9           |
| Н                  | 0.0               | 0.1                    |          | 0-1          | 0.0               | -0.5           |
| F                  | 4.1               | 3.8                    |          | _            | 4.4               | 4.0            |
| CF <sub>3</sub>    | 5-5               | 5.7                    |          | 4.9          | 5.0               | 5.8            |
| CN                 | 7.9               | 7.5                    |          | 8.4          | 8.6               | 8.1            |
| C-NO <sub>2</sub>  | 8∙4               | 8.7                    |          | -            |                   |                |
| n                  |                   | $10^{g}$               |          | 7            |                   | 9              |
| S.d.               |                   | 0.3                    |          | 0.5          | —                 | 0.6            |
| R                  |                   | 0.999                  |          | 0.994        |                   | 0.992          |
| $ ho_{	extsf{F}}$  |                   | $14.1 \pm 0.4$         |          |              |                   | $14.0 \pm 1.0$ |
| $ ho_a$            |                   | $2.1 \pm 0.4$          | _        |              | _                 | $-0.3 \pm 1.0$ |
| $ ho_{\mathtt{R}}$ | —                 | $10.7 \pm 0.5$         |          |              |                   | $6.6 \pm 0.9$  |
| $A_0$              |                   | $0.1 \pm 0.2$          | _        |              |                   | $-0.5 \pm 0.5$ |

<sup>4</sup> Cl excluded; obs. value 2-8, calc. value -2.8; CF<sub>3</sub> excluded in accord with evidence of significant OH/CF<sub>3</sub> chelation. <sup>b</sup> Includes Pr, Pr<sup>i</sup>; excludes OH. <sup>c</sup> Excludes Pr<sup>i</sup>, Bu<sup>i</sup>, SMe and Ph due to steric twisting. <sup>d</sup> Excludes NMe<sub>2</sub>, Ph, Pr<sup>i</sup> and Bu<sup>i</sup> due to steric twisting; also excludes Cl, obs. value 7.8, calc. value 0-8. <sup>e</sup> Includes also CCl<sub>3</sub>, OC<sub>2</sub>H<sub>5</sub>, Et, Pr, Pr<sup>i</sup>, Bu<sup>i</sup>, *c*-C<sub>6</sub>H<sub>11</sub>; excludes Cl, obs. value 8-8, calc. value 6-0.

=OH <sup>f</sup>Exptl values are for Х

<sup>g</sup> Also includes SMe, Cl.

|                                                                                                 | Fo                               | or $-\delta\Delta G^{\circ}_{(g)}$ val | ues by equatio                        | n (2)                                        | For $-\delta\Delta E_{\rm p}$ values by equation (2) |                                                         |                                       |                                  |  |  |
|-------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|---------------------------------------|----------------------------------------------|------------------------------------------------------|---------------------------------------------------------|---------------------------------------|----------------------------------|--|--|
| Series                                                                                          | $R_{(overall)}$                  | R (σ <sub>α</sub> vs σ <sub>F</sub> )  | $R_{(\sigma_{\alpha} vs \sigma_{R})}$ | $R_{(\sigma_{\rm F}{\rm vs}\sigma_{\rm R})}$ | $R_{(overall)}$                                      | $R_{(\sigma_{\alpha} \text{ vs } \sigma_{\mathrm{F}})}$ | $R_{(\sigma_a \text{ vs } \sigma_R)}$ | R (OF VS OR                      |  |  |
| OH <sup>+</sup><br>1. X—C <sup>*</sup> CF <sub>3</sub>                                          | 0.998                            | -0.315                                 | -0.051                                | -0.004                                       | 0.995                                                | 0.147                                                   | -0.028                                | 0.249                            |  |  |
| 2. X—C <sup>//</sup> H                                                                          | 1.000                            | 0.033                                  | -0.259                                | -0.009                                       | 0.993                                                | 0-227                                                   | -0.100                                | 0.125                            |  |  |
| 3. X-C CH,                                                                                      | 0-999                            | -0.126                                 | -0.223                                | 0.061                                        | 0.995                                                | 0.147                                                   | -0.028                                | 0.249                            |  |  |
| 4. X-C<br>OEt                                                                                   | 0.997                            | -0.127                                 | -0.400                                | 0.042                                        | 0.992                                                | 0.147                                                   | -0.028                                | 0.249                            |  |  |
| 5. $X - C^{\text{OH}^{+}}$                                                                      | 0.995                            | 0.136                                  | -0.193                                | 0.057                                        | 0·994                                                | 0.147                                                   | -0.028                                | 0.249                            |  |  |
| 6.                                                                                              | 1.000                            | 0.523                                  | -0.106                                | 0.230                                        | 0.998                                                | -0.030                                                  | 0.007                                 | 0.268                            |  |  |
| X<br>7. $p$ -XC <sub>6</sub> H <sub>4</sub> CMe <sub>2</sub> <sup>+</sup><br>OH <sup>+</sup>    | 0.999                            | -0.387                                 | 0.171                                 | 0.092                                        | 0.999                                                | -0.030                                                  | 0.007                                 | 0.268                            |  |  |
| 8. p-XPhC                                                                                       | 0.999                            | 0.114                                  | -0.005                                | 0.322                                        | 0.995                                                | -0.030                                                  | 0.007                                 | 0.268                            |  |  |
| 9. <i>p</i> -XPhC CH,                                                                           | 0.999                            | -0.176                                 | 0.149                                 | 0.192                                        | 0.999                                                | -0.030                                                  | 0.007                                 | 0.268                            |  |  |
| 10. p-XPhC OCH <sub>3</sub>                                                                     | 0.998                            | -0.123                                 | 0.253                                 | 0.146                                        | 0.994                                                | -0.030                                                  | 0.007                                 | 0.268                            |  |  |
| 11. p-XPhC NMe                                                                                  | 0.994                            | -0.093                                 | 0.181                                 | 0.194                                        | 0.992                                                | -0.030                                                  | 0.007                                 | 0.268                            |  |  |
| 12. $4-XC_5H_4NH^+$<br>13. $p-XC_6H_4NMe_2H^+$<br>14. $2-XC_5H_4NH^+$<br>15. $m-XC_6H_4CMe_2^+$ | 0·999<br>0·993<br>0·999<br>0·995 | -0.180<br>0.479<br>-0.229<br>0.071     | 0·158<br>0·446<br>0·152<br>0·421      | 0·196<br>0·553<br>0·053<br>0·120             | 0·999<br>0·992<br>0·992<br>0·997                     | -0.030<br>-0.049<br>-0.030<br>-0.030                    | 0.007<br>-0.076<br>0.007<br>0.007     | 0·268<br>0·273<br>0·268<br>0·268 |  |  |
| 16. m-XPhC                                                                                      | 0·998                            | 0.139                                  | 0.159                                 | 0.175                                        | 0.974                                                | -0.185                                                  | -0.448                                | -0.005                           |  |  |
| н<br>17. 3-ХС₅Н₄NH <sup>+</sup><br>Он <sup>+</sup>                                              | 0.997                            | -0.352                                 | 0.042                                 | 0.109                                        | 0.993                                                | -0.030                                                  | 0.007                                 | 0.268                            |  |  |
| 18. m-XPhC OMe                                                                                  | 0.999                            | 0.295                                  | 0.235                                 | 0.310                                        | 0.992                                                | -0.030                                                  | 0.007                                 | 0.268                            |  |  |

Table 2. Non-colinearity of independent parameters used in equation (2)

| Series                                                                                       | $\rho_{\rm F}({\rm obs})$ | $\rho_{\rm F}$ (theo)      | $\rho_{a}(\text{obs})$    | $\rho_{\alpha}$ (theo)    | $\rho_{\rm R}({\rm obs})$ | $\rho_{\rm R}$ (theo)                   |
|----------------------------------------------------------------------------------------------|---------------------------|----------------------------|---------------------------|---------------------------|---------------------------|-----------------------------------------|
| OH*                                                                                          | $31.5 \pm 2.9$            | $34.9 \pm 4.7$             | $26.7 \pm 1.3$            | $29.5 \pm 3.4$            | $47.9 \pm 1.9$            | $79.5 \pm 4.1$                          |
| X<br>OH <sup>+</sup>                                                                         |                           |                            |                           |                           |                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 2. H-C                                                                                       | $35.5 \pm 0.6$            | $37.8 \pm 4.6$             | $24.9 \pm 0.4$            | $26.5 \pm 3.5$            | $49.1 \pm 0.4$            | 74·1 ± 3·9                              |
| 3. CH <sub>3</sub> -C <sup>'</sup> X                                                         | $35.1 \pm 1.3$            | $37.9 \pm 4.4$             | $22.0 \pm 1.1$            | $23.4 \pm 3.1$            | $39.7\pm0.9$              | 71·2±3·8                                |
| 4. EtO-C $X$                                                                                 | $29.8 \pm 0.4$            | $32.5 \pm 3.5$             | $15.7 \pm 0.4$            | $11.9 \pm 3.5$            | $24.5 \pm 0.4$            | 50·9 ± 3·(                              |
| 5. $Me_2N-C$                                                                                 | $30.1 \pm 1.2$            | $31.0 \pm 3.1$             | $12.5 \pm 1.0$            | $14.2 \pm 2.2$            | $10.2 \pm 1.2$            | $39.0 \pm 2.7$                          |
| 6. — OH <sup>+</sup>                                                                         | $21.5\pm0.6$              | $23.1 \pm 2.5$             | $7.4 \pm 0.7$             | $4.6 \pm 2.5$             | $37.5 \pm 0.4$            | $55.5 \pm 2.1$                          |
| X<br>7. $p$ -XC <sub>6</sub> H <sub>4</sub> CMe <sub>2</sub> <sup>+</sup><br>OH <sup>+</sup> | $19.0 \pm 0.6$            | $20.0 \pm 1.2$             | $4.6 \pm 0.6$             | $2.7 \pm 1.2$             | $35.0 \pm 0.7$            | 39·9±1·(                                |
| 8. $p$ -XC <sub>6</sub> H <sub>4</sub> C H                                                   | $16.6 \pm 0.6$            | $16.7 \pm 2.1$             | $5.0\pm0.6$               | $0.9 \pm 2.1$             | $31.6 \pm 0.7$            | $33.5 \pm 1.8$                          |
| 9. $p$ -XC <sub>6</sub> H <sub>4</sub> C<br>CH <sub>3</sub>                                  | $16.1 \pm 0.5$            | $16.8 \pm 0.9$             | $4.4 \pm 0.4$             | $1.8 \pm 0.9$             | $27.4 \pm 0.5$            | $30.8 \pm 0.8$                          |
| 10. p-XC <sub>6</sub> H₄C<br>OMe                                                             | $15.3 \pm 0.5$            | $14.9 \pm 1.8$             | $3.1 \pm 0.4$             | $1 \cdot 1 \pm 1 \cdot 8$ | $18.6 \pm 0.5$            | $25.3 \pm 1.5$                          |
| OH $+$<br>11. $p$ -XC <sub>6</sub> H <sub>4</sub> C NMe <sub>2</sub>                         | $14.6 \pm 0.8$            | $16.1 \pm 2.0$             | $1.9 \pm 0.8$             | $1.4 \pm 2.0$             | $14.7 \pm 1.1$            | $23.7 \pm 1.8$                          |
| 12. $4-XC_{4}H_{4}NH^{+}$                                                                    | $21.8 \pm 0.6$            | $20.8 \pm 0.9$             | $5.0 \pm 0.5$             | $2.5 \pm 0.9$             | $25.7 \pm 0.6$            | $31.2 \pm 0.8$                          |
| 13. $p$ -XC <sub>6</sub> H <sub>4</sub> NMe <sub>2</sub> H <sup>+</sup>                      | $14.4 \pm 1.1$            | $16.5 \pm 1.6$             | $2 \cdot 1 \pm 1 \cdot 1$ | $-1.5 \pm 1.5$            | $12.7 \pm 1.0$            | $14.1 \pm 1.3$                          |
| 14. 2-X-C₅H₄NH <sup>+</sup>                                                                  | $27.5 \pm 0.2$            | $25 \cdot 2 \pm 2 \cdot 2$ | $7.6 \pm 0.5$             | $4.2 \pm 2.2$             | $13.3 \pm 0.5$            | 19·4 ± 1·5                              |
| 15. $m$ -XC <sub>6</sub> H <sub>4</sub> CMe <sub>2</sub> <sup>+</sup><br>OH <sup>+</sup>     | $16.9 \pm 0.7$            | $17.2 \pm 0.7$             | $3.8 \pm 1.0$             | $0.9 \pm 0.7$             | $13.2 \pm 1.7$            | $7.2 \pm 0.6$                           |
| 16. $m - XC_6 H_4 C$                                                                         | $15.3 \pm 0.6$            | $15.6 \pm 2.5$             | $3.5 \pm 0.5$             | $1.4 \pm 3.0$             | $12.6\pm0.8$              | $11.8 \pm 3.3$                          |
| H<br>17. 3-XC₅H₄NH <sup>+</sup><br>_OH <sup>+</sup>                                          | $23.3 \pm 0.8$            | $21.0 \pm 1.6$             | $3.8 \pm 0.7$             | $2.7 \pm 1.6$             | $16.3 \pm 0.8$            | 11·0 ± 1·3                              |
| 18. $m - XC_6 H_4 C$ OMe                                                                     | $14.1 \pm 0.4$            | $14.0 \pm 1.0$             | $2 \cdot 1 \pm 0 \cdot 4$ | $-0.3 \pm 1.0$            | $10.7\pm0.5$              | 6·6 ± 0·5                               |

Table 3. Summary of reaction constants obtained on the basis of equation (2) for 18 aliphatic and aromatic series if compounds

of 18 families of compounds on the basis of equation (2). The  $\sigma_a$ ,  $\sigma_F$  and  $\sigma_R$  values corresponding to the substituents X can be found in Ref. 12. The statistically determined  $\delta\Delta G^{\circ}_{(g)}$  and  $\delta\Delta E$  values are given in the Calc. (1) and Calc. (4) columns, respectively.

In relation to the aforementioned results it is worth emphasizing that (a) the  $\delta\Delta G^{\circ}_{(g)}$  and  $\delta\Delta E$  values obtained by fitting are similar to their experimental and STO-3G calculated counterparts, respectively, particularly in the former; this is not the result of the need to make zero-point vibrational corrections on the theoretical data or any entropic effects,<sup>\*</sup> and (b) as can be seen from Table 2, the independent parameters used for the  $\delta\Delta G^{\circ}_{(g)}$  and  $\delta\Delta E$  fittings meet the non-colinearity requirement.

The reaction constants obtained for the 18 families of compounds from the above analyses are listed in Table 3. We emphasize the high consistency between the results from the fit to  $\delta\Delta G^{\circ}$  and  $\delta\Delta E$  values, which are denoted by (obs) and (theo), respectively.

Thus,

 $\rho_{\rm F(obs)} = 0.908 \rho_{\rm F(theo)} + 1.42$ (n = 18, r = 0.984, s.d. = 1.40)(3)

and

$$\rho_{a(\text{obs})} = 0.834 \rho_{a(\text{theo})} + 2.81$$
(*n* = 18, *r* = 0.985, s.d. = 1.47) (4)

We can therefore conclude that STO-3G/INDO calculations are accurately descriptive of the field/inductive and polarizability effects of the studied substituents, irrespective of the molecular structure concerned, so much so that equations (3) and (4) predict the reaction constants of the field/inductive and polarizability effects with a degree of uncertainty close to that of experimental measurements (see Figures 1 and 2).

On comparing the reactions constants  $\rho_{R(obs)}$  and  $\rho_{R(theo)}$  listed in Table 3, it is seen that their correlation is not very good (r = 0.891). This is largely a result of some families of compounds having overestimated theoretical resonance contributions. This overestimation in theoretical calculations encountered in considering interactions between  $\pi$ -electron-releasing and -withdrawing fragments in a given family of compounds has been ascribed to constant electron correlation effects within the family.<sup>25</sup> However, Aue *et al.*<sup>26</sup> found that the overestimation of the resonance effect in the pyridine family can be partly, although never fully, corrected by including the MP2/6–31G(d, p) correlation, which is a very high theoretical level.

A more detailed analysis of the picture reveals that the theoretical overestimation of the resonance is more marked in those families for which  $\rho_{\text{R(obs)}}/\rho_{\text{F(obs)}} > 1$ . In these systems, where the resonance effect is prevalent, inasmuch as the field/inductive and polarizability effects are accurately described by the theoretical calculations (see Figures 1 and 2), a direct relationship of the form

$$\delta \Delta G^{\circ} = m \delta \Delta E + b \tag{5}$$

will not hold. Tables 1 and 4 list the results of the linear regression analysis of equation (5) as Calc. (2) and Equation (5), respectively. One way of empirically correcting the above deviations involves fitting  $\delta\Delta G$  against  $\delta\Delta E$  and  $\sigma_{\rm R}(X)$  (where X denotes the substituent) according to

$$\delta \Delta G^{\circ} = m_1 \delta \Delta E + m_2 \sigma_{\mathsf{R}}(\mathsf{X}) + b \tag{6}$$

The results of this fit are given as Calc. (3) and Equation (6) in Tables 1 and 4, respectively. The improvement in the theoretical predictions thus achieved is obvious. On the other hand, the  $m_2$  term in Table 4 provides a clear idea of the theoretical deviation resulting from the evaluation of the STO-3G/INDO level of the resonance effect in each family of compounds. We should note that this type of empirical correction requires the prior availability of the experimental data, so it has no predictive value.

For this reason, we examined other procedures for estimation of the reaction constants corresponding to the electron resonance effect. In this context, Reynolds et al.<sup>5f</sup> used the  $\pi$  charge on the carbon atom of the protonated parent molecule which was to bear a given substituent X as an index for evaluating the  $\pi$ -electron demands of the system, which they denoted  $q_{\pi}^{H}$ . There is no doubt that this index provides most of the information on the  $\pi$ -electron demands of a molecular system; however, its usage requires the occurrence of a reference state common to all the systems concerned in which  $q_{\pi}^{H} = 1$ . In principle, this is the same as assuming that all the carbon atoms in a para position in monosubstituted benzenes are electronically equivalent. The index proposed in this work does not require the occurrence of this common reference state.

Table 5 gives the Mulliken  $\pi$  charge of the carbon atom that is to bear the substituent, both for the neutral forms  $(q_{\pi}^{n})$  and for the protonated forms  $(q_{\pi}^{n} = q_{\pi}^{n})$ , for Reynolds *et al.*) corresponding to the optimized geometries. As can be seen, similar family structures have similar  $q_{\pi}^{n}$  values. Thus, the families with a generic structure of the form Ph-CO-X have  $q_{\pi}^{n}$  values of *ca* 0.97, while the Ph-C(Me)CH<sub>2</sub> and Ph-N(Me)<sub>2</sub> families have  $q_{\pi}^{n}$  values of *ca* 0.99 and >1, respectively. We consider that these small differences in the  $q_{\pi}^{n}$ values are the chief origin of the marked dependence of the fits between  $\rho_{R}$  and  $1 - q_{\pi}^{H}$  on the family concerned, as stated above.<sup>6g</sup>

On the basis of the above arguments, we put forward a more universal electron index for measuring the  $\pi$ electron demand of molecular systems, viz. the difference between  $q_{\pi}^{\text{N}}$  and  $q_{\pi}^{\text{N}}$ , which we shall denote  $\delta q$  (see

<sup>\*</sup> 3-21G//3-21G calculations show the relative basicities within a given family of compounds to be affected by less than 2 kcal mol.<sup>24</sup>







Figure 2.  $\rho_a$  (obs) vs  $\rho_a$  (theo) for the 18 families studied

## J. CATALÁN ET AL.

|                                                                                                                                                | Equa                      | tion (5)          | Equation (6)   |                   |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|----------------|-------------------|-----------------------|
| Series                                                                                                                                         | b                         | m                 | Ь              | <i>m</i> 1        | <i>m</i> <sub>2</sub> |
| OH                                                                                                                                             |                           |                   |                | 0.000 - 0.007     | 22.2 . 0.2            |
| 1. $X-C$ CF <sub>3</sub>                                                                                                                       | $3.2 \pm 2.5$             | $0.695 \pm 0.075$ | 1·1 ± 1·9      | $0.880 \pm 0.087$ | $-22.2 \pm 8.3$       |
| OH <sup>+</sup><br>2. X—C <sup>*</sup>                                                                                                         | $2.2 \pm 2.2$             | $0.720 \pm 0.074$ | $1.8 \pm 1.8$  | $0.936 \pm 0.118$ | $-20.1 \pm 9.4$       |
| `H<br>OH⁺                                                                                                                                      |                           |                   |                |                   |                       |
| 3. X-C                                                                                                                                         | $3.2 \pm 1.9$             | $0.632 \pm 0.067$ | $2.3 \pm 1.6$  | $0.847 \pm 0.116$ | $-19.7 \pm 9.4$       |
| `СН,<br>ОН⁺                                                                                                                                    |                           |                   |                |                   |                       |
| 4. X-C                                                                                                                                         | $2.4 \pm 1.3$             | $0.673 \pm 0.068$ | $0.2 \pm 1.2$  | $0.936 \pm 0.067$ | $-19.8 \pm 4.5$       |
| OEt<br>OH⁺                                                                                                                                     |                           |                   |                |                   |                       |
| 5. X-C                                                                                                                                         | $3.4 \pm 1.7$             | $0.559 \pm 0.118$ | $0.9 \pm 1.0$  | $0.967 \pm 0.116$ | $-26.5 \pm 6.5$       |
| 6. $\rightarrow$ | $0.7 \pm 1.1$             | $0.703 \pm 0.052$ | $0.0 \pm 0.2$  | $0.846 \pm 0.212$ | $-9.1 \pm 13.0$       |
| x                                                                                                                                              |                           |                   |                |                   |                       |
| 7. $p-XC_6H_4CMe_2^+$<br>OH <sup>+</sup>                                                                                                       | $0.4 \pm 0.4$             | $0.892 \pm 0.034$ | $0.2 \pm 0.8$  | $0.931 \pm 0.105$ | $-2.0\pm 5.1$         |
| 8. p-XPhC                                                                                                                                      | $0.2 \pm 0.5$             | $1.008 \pm 0.053$ | $0.0 \pm 0.9$  | $1.058 \pm 0.148$ | $-2.1\pm5.7$          |
| H<br>OH⁺                                                                                                                                       |                           |                   |                |                   |                       |
| 9. p-XPhC <sup>*</sup>                                                                                                                         | $0.2 \pm 0.3$             | $0.848 \pm 0.039$ | $-0.3 \pm 0.5$ | $0.934 \pm 0.082$ | $-3.6 \pm 3.0$        |
| OH <sup>+</sup>                                                                                                                                |                           |                   |                |                   |                       |
| 10. $p$ -XPhC $OCH_3$                                                                                                                          | $1 \cdot 1 \pm 0 \cdot 4$ | $0.776 \pm 0.059$ | $0.3 \pm 0.7$  | $0.913 \pm 0.110$ | $-5.0\pm3.5$          |
| OH.                                                                                                                                            | 10.01                     | 0.740 - 0.000     | 00.00          | 0.864 + 0.004     | 45.29                 |
| 11. $p$ -XPhC NMe <sub>2</sub>                                                                                                                 | $1.0\pm0.4$               | $0.740 \pm 0.060$ | $0.2 \pm 0.6$  | $0.864 \pm 0.094$ | $-4.5 \pm 2.8$        |
| 12. $4-XC_{5}H_{4}NH^{+}$                                                                                                                      | $1.3 \pm 0.4$             | $0.886 \pm 0.040$ | $0.2 \pm 0.5$  | $1.049 \pm 0.065$ | $-7.3 \pm 2.6$        |
| 13. $p$ -XC <sub>6</sub> H <sub>4</sub> NMe <sub>2</sub> H <sup>+</sup>                                                                        | $0.1 \pm 0.1$             | $0.992 \pm 0.026$ | $0.2 \pm 0.3$  | $0.967 \pm 0.044$ | $-0.7 \pm 1.0$        |
| 14. $2-XC_{5}H_{4}NH^{+}$                                                                                                                      | $2.6 \pm 0.7$             | $0.907 \pm 0.081$ | $0.9 \pm 0.9$  | $1.086 \pm 0.097$ | $-7.7 \pm 3.3$        |
| 15. $m \cdot XC_6 H_4 CMe_2^+$                                                                                                                 | $-0.8 \pm 0.7$            | $1.021 \pm 0.135$ | $0.1 \pm 0.7$  | $0.964 \pm 0.104$ | $5.4 \pm 2.6$         |
| 16. m-XPhC                                                                                                                                     | $-0.5 \pm 0.5$            | $0.953 \pm 0.121$ | $-0.3 \pm 0.9$ | $0.928 \pm 0.153$ | $1.2 \pm 3.4$         |
| 17. $3-XC_{5}H_{4}NH^{+}$                                                                                                                      | $-0.6 \pm 0.4$            | $1.179 \pm 0.068$ | $0.3 \pm 0.6$  | 1.079 ± 0.069     | $3.8 \pm 1.8$         |
| 18. m-XPhC                                                                                                                                     | $-0.4 \pm 0.3$            | $1.022 \pm 0.074$ | $0.1 \pm 0.4$  | $0.973 \pm 0.060$ | $2.5 \pm 1.2$         |
| OMe                                                                                                                                            |                           |                   |                |                   |                       |

Table 4. Correlation parameters for equations (5) and (6)

| Compound                                                         | $q_{\pi}^{N}$ | $q_{\pi}^{p}$ | $\delta q$ |
|------------------------------------------------------------------|---------------|---------------|------------|
| p-C,H,CHO                                                        | 0.9723        | 0.8018        | -0.1705    |
| p-C,H,COCH                                                       | 0.9756        | 0.8231        | -0.1525    |
| p-C,H,COOCH                                                      | 0.9674        | 0.8416        | -0.1258    |
| p-C <sub>6</sub> H <sub>5</sub> CONMe <sub>2</sub>               | 0.9717        | 0.8704        | -0.1013    |
| $pC_6H_5COCF_3$                                                  | 0.9626        | 0.7859        | -0.1767    |
| p-C <sub>6</sub> H <sub>5</sub> COF                              | 0.9619        | 0.8109        | -0.1510    |
| $p-C_6H_5CONH_2$                                                 | 0.9743        | 0.8614        | -0.1129    |
| p-C <sub>6</sub> H <sub>5</sub> CCH <sub>3</sub> CH <sub>2</sub> | 0.9930        | 0.8000        | -0.1930    |
| $p-C_6H_5NMe_2$                                                  | 1.0421        | 0.9326        | -0.1095    |
| $p-C_5H_5N$                                                      | 0.9643        | 0.8053        | -0.1590    |
| o-C <sub>5</sub> H <sub>5</sub> N                                | 0.9825        | 0.8777        | -0.1048    |
| $m-C_5H_5N$                                                      | 0.9614        | 0.9844        | -0.0230    |
| m-C <sub>6</sub> H <sub>5</sub> CHO                              | 1.0090        | 1.0088        | -0.0002    |
| m-C <sub>6</sub> H <sub>5</sub> COOMe                            | 1.0113        | 1.0044        | -0.0069    |
| m-C <sub>6</sub> H <sub>5</sub> CCH <sub>2</sub> Me              | 1.0075        | 1.0137        | 0.0062     |

Table 5.  $\pi$  Charges of the carbon that will bear the substituent in the neutral  $(q_{\pi}^{N})$  and protonated forms  $(q_{\pi}^{P})$  and  $\delta q = q_{\pi}^{P} - q_{\pi}^{N}$  for the different families of compounds calculated at the STO-3G//INDO level

Table 5). Figure 3 shows a plot including the available data for  $\rho_{\rm R}$  vs  $\delta q$  for the aromatic compounds studied in this work. It should be noted that the correlation is satisfactory for the so-called 'resonant positions,' even in bases of such different nature as p-X-Ph-COY [where Y denotes H, Me, OMe or N(Me)<sub>2</sub>], p-Ph-C(Me)CH<sub>2</sub>, p-Ph-N(Me)<sub>2</sub>, p-pyridine and o-pyridine. However, it does not accurately describe the

picture for a *meta* substituent. Compounds of the form X-COY, in which the carbon atom acting as a probe is adjacent to both the substituent and fragment Y, have  $\delta q$  values that vary even with the conformation of Y, so they were not considered in this treatment.

One other probe to be considered to describe the charge variations involved in a protonation process is the electron charge of the proton on uptake by the



Figure 3. Available data for  $\rho_{R}(obs)$  vs  $\delta q$  for the aromatic compounds studied

|                                                                                                                 |                                                                                                                                                                           | obt                                                                                                                                           | ained from multi-li                                                                                                                             | inear regression stat                                                                                                          | istical analysis or                                                                                                                                         | r equation (7)                                                                                                                                  |                                                                                                                                                 |                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| x                                                                                                               | X-C OH'<br>CF5                                                                                                                                                            | X-C H                                                                                                                                         | X-C OH'                                                                                                                                         | X-C OEt                                                                                                                        | X-C OH'                                                                                                                                                     | ,HO=                                                                                                                                            | p-X-PhC(CH <sub>3</sub> ) <sub>2</sub> *                                                                                                        | <i>p</i> -XPhC H                                                                                                                          |
| NM $e_2$<br>NH $_2$<br>OME<br>OME<br>OH<br>ME<br>H<br>F<br>CN<br>- 10 <sup>2</sup> $\rho_R(q_{H^{-1}})$         | $\begin{array}{c} 0.6811\\ 0.6643\\ 0.6643\\ 0.6505\\ 0.6400\\ 0.6378\\ 0.6098\\ 0.6122\\ 0.6110\\ 0.6110\\ 0.6186\\ 8.6\pm0.5\\ 0.955\\ 0.995\end{array}$                | $\begin{array}{c} 0.6757\\ 0.6593\\ 0.6593\\ 0.6326\\ 0.6326\\ 0.6074\\ 0.6074\\ 0.6032\\ 0.6127\\ 0.6127\\ 0.6127\\ 0.922\\ 0.92\end{array}$ | $\begin{array}{c} 0.6946\\ 0.6819\\ 0.6715\\ 0.6636\\ 0.6640\\ 0.6640\\ 0.6410\\ 0.6394\\ 0.6378\\ 0.6311\\ 0.6431\\ 0.6431\\ 0.992\end{array}$ | 0.6960<br>0.6872<br>0.6720<br>0.6739<br>0.6739<br>0.6739<br>0.6679<br>0.6679<br>0.6674<br>0.6674<br>0.6674<br>0.988            | $\begin{array}{c} 0.7054\\ 0.6994\\ 0.6994\\ 0.6893\\ 0.6893\\ 0.7012\\ 0.6893\\ 0.7012\\ 0.6893\\ 0.6879\\ 0.6879\\ 0.6877\\ 1.2\pm0.3\\ 0.983\end{array}$ | $\begin{array}{c} 0.7259\\ 0.7202\\ 0.7129\\ 0.7129\\ 0.7092\\ 0.6918\\ 0.6918\\ 0.6918\\ 0.6893\\ 0.6893\\ 0.6893\\ 0.9893\\ 0.992\end{array}$ | $\begin{array}{c} 0.7672\\ 0.7624\\ 0.7475\\ 0.7448\\ 0.7332\\ 0.7332\\ 0.7332\\ 0.7297\\ 0.7128\\ 0.7128\\ 0.7128\\ 0.7128\\ 0.976\end{array}$ | $\begin{array}{c} 0.6990\\ 0.6963\\ 0.6963\\ 0.6861\\ 0.6848\\ 0.6788\\ 0.6757\\ 0.6757\\ 0.6654\\ 0.6622\\ 4.2\pm0.3\\ 0.988\end{array}$ |
| x                                                                                                               | p-XPhC                                                                                                                                                                    | .нс<br>р-У                                                                                                                                    | PhC OCH,                                                                                                                                        | <i>p</i> -XPhC OH <sup>+</sup>                                                                                                 | 4-X-C                                                                                                                                                       | + HN <sup>↓</sup> H                                                                                                                             | p-X-PhNMe₂H⁺                                                                                                                                    | 2-X-C <sub>5</sub> H₄NH <sup>+ </sup> "                                                                                                   |
| NMe <sub>2</sub><br>NH <sub>2</sub><br>OMe<br>OH<br>Me<br>H<br>F<br>CF,<br>CF,<br>CF,<br>$-10^2\rho_R(q_{H^*})$ | $\begin{array}{c} 0.7147\\ 0.7129\\ 0.7039\\ 0.7032\\ 0.6979\\ 0.6979\\ 0.6976\\ 0.6976\\ 0.6976\\ 0.6976\\ 0.6976\\ 0.6976\\ 0.4875\\ 0.6978\\ 0.987\\ 0.987\end{array}$ |                                                                                                                                               | 0.7119<br>0.7095<br>0.7039<br>0.7034<br>0.7036<br>0.6973<br>0.6939<br>0.6939<br>0.6939<br>0.6939<br>0.6933<br>0.993                             | 0.7195<br>0.7174<br>0.7174<br>0.7150<br>0.7141<br>0.7012<br>0.7112<br>0.7071<br>0.7071<br>0.7071<br>0.7071<br>0.7071<br>0.7071 | 0.717<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                               | 994<br>0062<br>0062<br>955<br>955<br>966<br>866<br>866<br>866<br>866<br>96                                                                      | 0-6925<br>0-6916<br>0-6916<br>0-6891<br>0-6891<br>0-6880<br>0-6884<br>0-6854<br>0-6854<br>0-6854<br>0-996                                       | $\begin{array}{c} - \\ 0.6930 \\ 0.6930 \\ 0.6908 \\ 0.6908 \\ 0.6834 \\ 0.6969 \\ 1.0 \pm 0.02 \\ 0.999 \end{array}$                     |

Table 6. Mulliken charge of the proton in the protonated form  $(q_{\rm H}^{+})$ , calculated for 22 families of compounds (STO-3G//INDO calculation), and  $\rho_{\rm R}$  values

## J. CATALÁN ET AL.

| ×                                                                                                  | <i>m</i> -X-PhCMe <sub>2</sub> <sup>+</sup>                                                                                                | m-X-PhC H <sup>+</sup>                                                                                                                                   | 3-X-C <sub>5</sub> H₄NH <sup>+</sup>                                                                                                        | m-X-PhC OMe                                                                                                              | X-C OMe                                                                                                                           | X-C OH'                                                                                                                           | <i>p</i> -X-Ph-C CF <sub>5</sub>                                                                                                  | <i>p</i> -X-Ph-C NH <sub>2</sub>                                                                                               |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| NM62<br>NH2<br>OM6<br>OM6<br>OM6<br>OH<br>MC<br>H<br>F<br>CN<br>$-10^2\rho_{\rm R}(q_{\rm H}^{-})$ | $\begin{array}{c} 0.7246\\ 0.7224\\ 0.7224\\ 0.7224\\ 0.7208\\ 0.7208\\ 0.7207\\ 0.7151\\ 0.7151\\ 0.7151\\ 0.7190\\ 0.4\pm0.2\end{array}$ | $\begin{array}{c} 0.6749\\ 0.6736\\ 0.6698\\ 0.6698\\ 0.6696\\ 0.67736\\ 0.67736\\ 0.6776\\ 0.6674\\ 0.6664\\ 0.6664\\ 0.4\pm0.1\\ 0.4\pm0.1\end{array}$ | $\begin{array}{c} 0.6950\\ 0.6931\\ 0.6896\\ 0.6885\\ 0.6885\\ 0.6885\\ 0.6828\\ 0.6865\\ 0.6865\\ 0.6863\\ 0.6840\\ 0.6\pm0.09\end{array}$ | $\begin{array}{c} 0.6990\\ 0.6990\\ 0.6961\\ 0.6961\\ 0.6987\\ 0.6973\\ 0.6935\\ 0.6935\\ 0.6935\\ 0.3\pm0.1\end{array}$ | $\begin{array}{c} 0.6946\\ 0.6845\\ 0.6778\\ 0.6778\\ 0.6728\\ 0.6628\\ 0.6650\\ 0.6650\\ 0.6630\\ 0.6654\\ 2.8\pm0.4\end{array}$ | $\begin{array}{c} 0.6967\\ 0.6884\\ 0.6884\\ 0.6738\\ 0.6745\\ 0.6775\\ 0.6775\\ 0.6573\\ 0.6678\\ 0.6684\\ 2.3\pm0.3\end{array}$ | $\begin{array}{c} 0.7089\\ 0.7054\\ 0.6967\\ 0.6936\\ 0.6871\\ 0.6871\\ 0.6796\\ 0.6732\\ 0.6777\\ 0.6777\\ 4.5\pm0.3\end{array}$ | 0.7150<br>0.7150<br>0.7138<br>0.7091<br>0.7080<br>0.7033<br>0.7035<br>0.7035<br>0.7035<br>0.7035<br>0.6995<br>0.6995<br>0.6995 |
| R<br>*Only substituents                                                                            | 0.946<br>s with small steric and                                                                                                           | 0.978<br>//or adjacent lone pair e                                                                                                                       | 0.991<br>ffects have been includ                                                                                                            | 0.968<br>ded for <i>o</i> -pyridines.                                                                                    | 0-988                                                                                                                             | 0-988                                                                                                                             | 066-0                                                                                                                             | 0-992                                                                                                                          |

EVALUATION OF INTRINSIC REACTION CONSTANTS



Figure 4.  $\rho_{\rm R}({\rm obs})$  vs  $\rho_{\rm R}(q_{\rm H^*})$  for the 18 families studied

| Compound | Y                | $\rho_{\rm F}$ [equation (3)] | $ \rho_a $ [equation (4)] | $\rho_{R}$ [equation (8)] |
|----------|------------------|-------------------------------|---------------------------|---------------------------|
|          |                  |                               |                           |                           |
| X-(_)-C  |                  |                               |                           |                           |
| Ϋ́Υ      | CF,              | 17-6                          | 5.1                       | 30.1                      |
|          | H                | 16.6                          | 3.5                       | 28.8                      |
|          | Me               | 16.7                          | 4.3                       | 25.3                      |
|          | OMe              | 15.0                          | 3.7                       | 20.0                      |
|          | $NH_2$           | 14-6                          | 3.1                       | 19-1                      |
|          | NMe <sub>2</sub> | 16.0                          | 3.9                       | 17-4                      |
| 0        |                  |                               |                           |                           |
| XC       |                  |                               |                           |                           |
| Y        | CF <sub>3</sub>  | 32.9                          | 27.1                      | 48.2                      |
|          | H                | 35.5                          | 24.7                      | 49.5                      |
|          | Me               | 35.6                          | 22.1                      | 39.4                      |
|          | OMe              | 31.8                          | 14.4                      | 22.7                      |
|          | OEt              | 30.6                          | 12.6                      | 22.2                      |
|          | $NH_2$           | 26.9                          | 14.4                      | 20.3                      |
|          | $NMe_2$          | 29.4                          | 14.5                      | 15.6                      |

| able 7. Calculated p constants from equations 5, 4 and | . Calculated <i>o</i> constants from equation | s 3, 4 | and | 8ª |
|--------------------------------------------------------|-----------------------------------------------|--------|-----|----|
|--------------------------------------------------------|-----------------------------------------------|--------|-----|----|

\*X denotes the substituents and Y the group in each family of compounds. X substituents considered here are the same as those included in Table 6.

base.<sup>27</sup> Table 6 gives the Mulliken  $q_{\rm H^{+}}$  (STO-3G// INDO) values for the different families compounds dealt with in this work. In order to estimate the resonance reactions constants, we analysed the charge of the proton in the derivatives of a given family with respect to the electronic parameters of the substituent by using an expression of the form

$$q_{\mathrm{H}^{+}} = A_0 + \rho_a \sigma_a + \rho_{\mathrm{F}} \sigma_{\mathrm{F}} + \rho_{\mathrm{R}} \sigma_{\mathrm{R}} \tag{7}$$

Figure 4 shows a plot of the  $\rho_{\rm R(obs)}$  values against the  $\rho_{\rm R}$  values obtained in the aforementioned analysis, which are denoted by  $\rho_{\rm R(q_{\rm H}+)}$ . The consistency is fairly high:

$$\rho_{\mathsf{R}(\mathsf{obs})} = -4.33 \rho_{\mathsf{R}(q_{\mathsf{H}}+)} \times 10^2 + 9.88$$
  
(n = 18, r = 0.981, s.d. = 2.6) (8)

One should take into account that the fit includes all 18 families studied, which encompass oxygen-, carbonand nitrogen-containing bases bearing substituents not only in *para* but also in *ortho* and *meta* positions.

If STO-3G//INDO calculations provide accurate values for the reaction constants  $\rho_{\rm F}$ ,  $\rho_{\rm a}$  and  $\rho_{\rm R}$  of a given family of compounds by using equations (3), (4) and (8), then the proposed methodology should also be tested on a wider series of compounds. Therefore, we studied carbonyl compounds of the form X-COY and p-X-Ph-COY. Table 7 lists the  $\rho$  values calculated for these two series. As can be seen, the field/inductive reaction constants are virtually the same for each compound in each series (-32 for X-COY and -16 for p-X-Ph-COY); the fact that the latter series features a larger constant than the former arises from the shorter distance between the substituent and the basic site. The effect of the distance is much more marked on the polarizability component, which gives rise to a much smaller contribution in the p-X-Ph-COY series. As far as the resonance effect is concerned, inasmuch as it is transmittedthroughout the molecular skeleton M, the resonance reaction constant is larger<sup>28</sup> for the X-COY family than for the p-X-Ph-COY family as a result of a closer  $\pi$  interaction.

#### ACKNOWLEDGEMENTS

All the calculations were made on IBM 4381 computers at CC/UAM. We are also much indebted to the Spanish DIGICYT for financial support (project number PB93-0280). One of us (F.F.) gratefully acknowledges the award of an FPI grant by the Spanish Ministry of Education and Science.

## REFERENCES

- 1. L. P. Hammett, *Physical Organic Chemistry*. McGraw-Hill, New York (1940) and 2nd ed. (1970).
- 2. C. K. Ingold, Structure and Mechanism in Organic

Chemistry, 2nd ed., p. 78. Cornell University Press, Ithaca, NY (1968).

- M. Mishima, R. T. McIver, Jr, R. W. Taft, F. G. Borwell and W. N. Olmstead, J. Am. Chem. Soc. 106, 2717 (1984).
- 4. R. W. Taft, Prog. Phys. Org. Chem. 14, 247 (1983), and references cited therein.
- 5. (a) G. E. K. Branch and M. Calvin, The Theory of Organic Chemistry, p. 250. Prentice-Hall, Englewood Cliffs, NJ (1941); (b) R. W. Taft, in Steric Effects in Organic Chemistry, edited by M. S. Newman, p. 595. Wiley, New York (1956); (c) Y. Yukawa and Y. Tsuno, Bull. Chem. Soc. Jpn. 32, 971 (1959); (d) Y. Yukawa, Y. Tsuno and M. Sawada, Bull. Chem. Soc. Jpn. 45, 1210 (1972); (e) S. Ehrenson, R. T. C. Brownlee and R. W. Taft, Prog. Phys. Org. Chem. 10, 1 (1973); (f) W. F. Reynolds, P. Dais, D. W. McIntyre, R. D. Topsom, S. Marriott, E. Nagy-Felsobuki and R. W. Taft, J. Am. Chem. Soc. 105, 378 (1983); (g) C. G. Swain, S. G. Unger, R. N. Rosenquist and M. S. Swain, J. Am. Chem. Soc. 105, 492 (1983); (h) B. M. Wepster, J. Org. Chem. 49, 1993 (1985); (i) W. F. Reynolds and R. D. Topsom, J. Org. Chem. 45, 1989 (1985); (j) M. Charton, J. Org. Chem. 49, 1997 (1985); (k) M. Mishima, M. Fujio and Y. Tsuno, Tetrahedron Lett. 27, 939, 951 (1986); (1) M. Charton, Prog. Phys. Org. Chem. 16, 287 (1987).
- 6. (a) R. W. Taft, in Steric Effects in Organic Chemistry, edited by M. S. Neuman, p. 595. Wiley, New York (1965); (b) R. W. Taft and I. C. Lewis, J. Am. Chem. Soc. 80, 2436 (1958); (c) R. W. Taft, E. Price, I. R. Fox, I. C. Lewis, K. Anderson and G. T. Davis, J. Am. Chem. Soc. 85, 709 (1963); (d) C. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani and E. J. Lien, J. Med. Chem. 16, 1207 (1973); (e) C. A. Grob and M. G. Schlageter, Helv. Chim. Acta 59, 264 (1976); (f) M. Charton, Prog. Phys. Org. Chem. 13, 119 (1981); (g) R. W. Taft and R. D. Topsom, Prog. Phys. Org. Chem. 16, 1 (1987); (h) W. Adcock, F. Anvia, G. Butt, A. Cook, P. Duggan, C. A. Grobb, S. Marriott, J. Rowe, M. Taagepera, R. W. Taft and R. D. Topsom, J. Phys. Org. Chem. 4, 353 (1991). 7. (a) J. I. Brauman and L. K. Blair, J. Am. Chem. Soc. 90, 5636 (1968); 92, 5986 (1970); (b) J. I. Brauman, J. M. Riveros and L. K. Blair, J. Am. Chem. Soc. 93, 3914 (1971)
- W. J. Hehre, C. F. Pau, A. D. Headley, R. W. Taft and R. D. Topsom, J. Am. Chem. Soc. 108, 1711 (1986).
- 9. A. D. Headley, J. Am. Chem. Soc. 109, 2347 (1987).
- J. J. M. Abboud, J. Catalán, J. Elguero and R. W. Taft, J. Org. Chem. 53, 1137 (1988).
- R. W. Taft, I. A. Kopel, R. D. Topsom and F. Anvia, J. Am. Chem. Soc. 112, 2247 (1990).
- C. Hansch, A. Leo and R. W. Taft, *Chem. Rev.* 91, 165 (1991).
- 13. R. D. Topsom, Prog. Phys. Org. Chem. 16, 2347 (1987).
- K. Bowden and E. J. Grubbs, *Prog. Phys. Org. Chem.* 19, 183 (1993) and references cited therein.
- 15. M. Charton, *Prog. Phys. Org. Chem.* 13, 119 (1981), and references cited therein.
- O. Exner and Z. Friedl, Prog. Phys. Org. Chem. 19, 259 (1993), and references cited therein.
- (a) D. Rinaldi and J. L. Rivail, C.R. Acad. Sci. 274, 1664 (1972);
   (b) D. Rinaldi, A. E. Hoggan and A. Cartier,

GEOMO. QCPE No. 584, Lab. Chim. Theorique, University of Nancy, Vandoeuvre-les-Nancy.

- W. J. Hehre, R. F. Stewart and J. A. Pople, J. Chem. Phys. 51, 2657 (1969).
- J. S. Binkley, R. A. Whitheside, R. Krishnam, R. Seeger, D. J. De Frees, H. B. Schlegel, S. Topiol, L. R. Kahn and J. A. Pople, *Gaussian 80*. Department of Chemistry, Carnegie-Mellon University (1980); IBM version by E. M. Fluder and L. R. Kahn.
- J. Catalán, O. Mo, P. Pérez and M. Yáñez, *Tetrahedron* 39, 2851 (1983); *J. Mol. Struct. THEOCHEM* 94, 143 (1983).
- J. Catalán, J. L. G. De Paz, M. Yáñez and J. Elguero, Chem. Scr. 24, 84 (1984).
- (a) J. Catalán, J. L. G. De Paz, M. Yáñez, F. Amat-Guerri, R. Houriet, E. Rolli, R. Zehringer, P. Oelhafen, R. W. Taft, F. Anvia and J. H. Qiau, J. Am. Chem. Soc. 110, 2699 (1988); (b) J. Catalán, O. Mó, J. L. G. De Paz, P. Pérez and M. Yáñez, J. Org. Chem. 49, 4379 (1984); (c) J. Catalán, J. L. G. De Paz, M. Yáñez, R. M. Claramunt, C. López, J. H. Qiau, M. Taagepera and R. W. Taft, J.

Am. Chem. Soc. 112, 1303 (1990); (d) J. Catalán and J. L. G. De Paz, J. Phys. Org. Chem. 3, 255 (1990).

- W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, pp. 310-318. Wiley, New York (1986).
- 24. F. Anvia and R. W. Taft, unpublished results.
- J. M. L. Martin, J. P. Françoise and R. Gybels, J. Comput. Chem. 10, 346 (1989).
- D. H. Aue, M. W. Hugh, W. R. Davidson, P. Toure, H. P. Hopkins, S. P. Moulik and D. V. Jahagirdar, J. Am. Chem. Soc. 113, 1770 (1991).
- (a) S. Kang and D. Beveridge, *Theor. Chim. Acta* 22, 312 (1971);
   (b) W. F. Reynolds, P. G. Mezey, W. J. Hehre, R. D. Topsom and R. W. Taft, *J. Am. Chem. Soc.* 99, 582 (1977);
   (c) J. Catalán and A. Macias, *J. Chem. Soc.*, *Perkin Trans.* 2 1632 (1979);
   (d) W. J. Hehre, M. Tagepera, R. W. Taft and R. D. Topsom, *J. Am. Chem. Soc.* 103, 1344 (1981).
- J. Catalán, F. Fabero and J. L. G. De Paz, J. Mol. Struct. THEOCHEM 256, 161 (1992).